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June 14 2012

Administration

● Exercise 2 is due tomorrow.
● .Extended one day due to midterms.

● First assignment is up.
● Will cover it today.

● Midterm will be Jun 28th, at 6:00.
● In BA 2185/BA 2195

● Help Centre is still open.
● BA 2270.
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List Review

● Lists are a new type we used to store an array 
of variables.
● Created with:

list_name = [list_elt0, ..., list_eltn]
● Elements are referenced with

list_name[elt_#]
● Empty lists are allowed.
● Lists can have changing lengths and are 

heterogenous.

● Lists and strings can be sliced.
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List Questions

x = [1,2]

y = [0,2,4,6,8]

● What do these 
expressions evaluate 
to?

x[0] + y[-3]

y[0:1]

x[y[0]:]

y[-2:5]

y.append([])

y[5]
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List Questions

x = [1,2]

y = [0,2,4,6,8]

● What do these 
expressions evaluate 
to?

x[0] + y[-3]

5

y[0:1]

0

x[y[0]:]

[1, 2]

y[-2:5]

[6,8]

y.append([])

None

y[5]

[]
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Aliasing/Mutability Review

● Lists are mutable.
● That is, one can change the value of a list element 

or append/remove items from a list without needing 
to create a new list.

● To capture this, we view a list as a list of memory 
addresses in our memory model.

● Changing a list element is modifying the memory 
address that list element points to.

● This means lists have aliasing problems.
● Where one has multiple variables referring to the 

same list, and modifying one of these lists affects all 
of them.
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Aliasing Questions

● How many different lists 
are there at the end of 
this execution?

def foo(x)

    x.append(1)

    return x.pop()

x = []

y = x[:]

y.append(1)

y.pop()

foo(x)

z = y

foo(y)

a = foo(x)
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Aliasing Questions

● How many different lists 
are there at the end of 
this execution?

def foo(x)

    x.append(1)

    return x.pop()

x = []

y = x[:]

y.append(1)

y.pop()

foo(x)

z = y

foo(y)

a = foo(x)

2, x and y are 
separate lists, z is 
aliased with y.
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For Loop Review

● The format of a for loop is:

for list_elt in list_name:

    block
● The block is executed once for each element in 

the list.
● list_elt refers to each list element in turn.
● So the block code uses a different variable each 

time.

● Unravelling loops is a useful tool.
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Unravel these Loops

x = [0,1,2]

y = 0

for i in x:

    y+=2

x = range(4,10,2)

for i in x:

    print i
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Unravel these Loops

x = [0,1,2]

y = 0

for i in x:

    y+=2
i = x[0]

y += 2

i = x[1]

y += 2

i = x[2]

y += 2

x = range(4,10,2)

for i in x:

    print i
i = x[0]

print i

i = x[1]

print i

i = x[2]

print i
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Lists and Relational Operators

● != and == are defined on lists.
● Two lists are defined to be equal if each element is 

equal, and they're in the same places.
● Not based on memory addresses.
● So y == y[:] evaluates to True.



June 14 2012

Nested Lists

● Lists are heterogenous, and often one wants 
each list element to be another list.
● Used to represent matrices, tiles, spreadsheet cells, 

etc.

● To access an element in a nested list, one uses 
multiple square brackets.

list_name[list1_#][list2_#]...

● The closest brackets to the name are evaluated 
first.
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● Used to represent matrices, tiles, spreadsheet cells, 
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Nested Lists

● Lists are heterogenous, and often one wants 
each list element to be another list.
● Used to represent matrices, tiles, spreadsheet cells, 

etc.

● To access an element in a nested list, one uses 
multiple square brackets.

list_name[list1_#][list2_#]...

● The closest brackets to the name are evaluated 
first.
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print ?

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0
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0x10 0x8
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True

int

0x13
4

int

0x10
1



June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print True

eg_list: 0x1 
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1
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Evaluate the Boolean Expressions

x = [1,2]

y = [x,x,2,x]

y[0][0] = 12

y[0] == y[3]

x == y[1]

x = [1,2]

y = [x[:],x[:],2,x]

y[0][0] = 12

y[0] == y[3]

x == y[1]
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Evaluate the Boolean Expressions

x = [1,2]

y = [x,x,2,x]

y[0][0] = 12

y[0] == y[3]

True

x == y[1]

True

x = [1,2]

y = [x[:],x[:],2,x]

y[0][0] = 12

y[0] == y[3]

False

x == y[1]

True
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Tuples

● Similar to lists, but not mutable.
● So they cannot be changed once they are 

initialised.
● Aliasing is not a problem
● Faster.

● Syntax for creating tuples is like that of lists, but 
with parentheses instead of square brackets.

● Syntax for accessing tuple elements is like that 
of lists.
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Tuples

● Syntax for creating a tuple:

tuple_name = (elt0, elt1, ..., 
eltn)
● Note that this is ambiguous for a single element.
● a = (10) could be an integer or tuple

● Syntax for accessing a tuple element:

tuple_name[elt#]
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Tuples

● Syntax for creating a tuple:

tuple_name = (elt0, elt1, ..., 
eltn)
● Note that this is ambiguous for a single element.
● a = (10) could be an integer or tuple
● a = (10,) is unambiguous.

● Syntax for accessing a tuple element:

tuple_name[elt#]
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Assignment Statements

● Evaluate the right side first!
● Variables can be thought of as look up tables.
● The point of an assignment statement is to 

connect a memory location to a variable name.
● This means that one needs to evaluate the right 

side first, before one can do anything else.
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0x5

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = ?

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x3
13

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x3
13

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x13
4

int

0x5
0

int

0x3
13
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x13
4

int

0x5
0

int

0x3
13
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 17

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 0x11

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):
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Global
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0
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x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4



June 14 2012

Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
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0x5
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = x + f(4)
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Global
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = 0x11 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = 0x11 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model

def f(x):

    return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4
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Assignment Statements & Memory Model
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    return x + 4
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June 14 2012

While Loops

● For Loops are great if we know how many times 
we want to loop over something.
● In other cases, not so great.
● If you want to enforce a legal input, for example
● If you're playing a game and don't know how many 

turns there will be.
● If we want to loop indefinitely.

● In these cases we use a while loop.



June 14 2012

While loop syntax

while condition:

    block

● The condition evaluates to a boolean 
variable.

● The block is executed so long as the condition 
is true.

● If the condition is False the first time the 
while loop is seen, the block is never 
executed.
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Unravelling While Loops

● We saw that for loops can be unravelled to 
make the program simpler to analyse, albeit 
longer.

● While loops are more complicated and are not 
always possible to be unravelled.
● For eg. if the number of times the block is executed 

is dependent on user input.

● So to analyse them we need to use other tools.
● Debugger, visualiser, hand simulation, etc.



June 14 2012

While vs. For

● Every for loop can be written as a while loop.
● Not ever while loop can be written as a for loop:

while True:

    block

● How do we choose between while and for?
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While vs. For

● Every for loop can be written as a while loop.
● Not ever while loop can be written as a for loop:

while True:

    block

● How do we choose between while and for?
● for is simpler.
● In general we prefer simpler loops, as they are 

easier to read.
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While vs. For

● While loops are used when:
● We want infinite loops.
● We want to loop some number of times that we 

can't predict.
● That is, we want to loop until some condition is met.
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How many times does the while block get 
executed?

i = 0

while i<4:

    i+=1

x = +ve # > 1

def foo(x)

    for i in range(x):

        if i*i == x:

            return True

    return False

while not(foo(x)):

    x-=1
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How many times does the while block get 
executed?

i = 0

while i<4:

    i+=1

● 4 times, once 
for i = 0,1,2,3

x = +ve # > 1

def foo(x)

    for i in range(x):

        if i*i == x:

            return True

    return False

while not(foo(x)):

    x-=1

● Once for every amount that x is larger than 
the largest square number <= x.
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Docstrings

● Recall that the first line of a docstring contains type 
information.
● Specifically it tells us the parameter types and the 

expected output type.
● '''(parameter types) -> output type'''
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information.
● Specifically it tells us the parameter types and the 

expected output type.
● '''(parameter types) -> output type'''

● If we want to return multiple things, we wrap them 
with a tuple and use the following format
● '''(parameter types) -> (output types)'''
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Docstrings

● Recall that the first line of a docstring contains type 
information.
● Specifically it tells us the parameter types and the 

expected output type.
● '''(parameter types) -> output type'''

● If we want to return multiple things, we wrap them 
with a tuple and use the following format
● '''(parameter types) -> (output types)'''
● '''(NoneType) -> (int, str, list)'''
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Docstrings

● Recall that the first line of a docstring contains type 
information.
● Specifically it tells us the parameter types and the 

expected output types.
● '''(parameter types) -> (output types)'''



June 14 2012

Docstrings

● Recall that the first line of a docstring contains type 
information.
● Specifically it tells us the parameter types and the 

expected output types.
● '''(parameter types) -> (output types)'''

● This is only for the benefit of the humans writing and 
reading the program.

● Python does not check or enforce this convention in any 
way.

● Changing your docstring does not change your function in 
anyway.
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Docstrings

● Recall that the first line of a docstring contains type 
information.
● Specifically it tells us the parameter types and the 

expected output types.
● '''(parameter types) -> (output types)'''

● This is only for the benefit of the humans writing and 
reading the program.

● Python does not check or enforce this convention in any 
way.

● Changing your docstring does not change your function in 
anyway.



June 14 2012

Indentation

● I have been using indented blocks a lot when 
giving python syntax.

for item in list:

    block
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Indentation

● I have been using indented blocks a lot when 
giving python syntax.

while condition:

    block
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Indentation

● I have been using indented blocks a lot when 
giving python syntax.

if condition:

    block1

else:

    block2
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Indentation

● I have been using indented blocks a lot when 
giving python syntax.

def foo(parameters):

    block
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Indentation

● I have been using indented blocks a lot when 
giving python syntax.

def foo(parameters):

    block

● I want to make it explicit that these blocks last 
as long as the indentation is at least one tab.
● It can be more, because blocks can contain sub 

blocks.
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Sub-blocks

def foo(parameters):

    block

        sub-block

    block
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Sub-blocks

def foo(x):

    if (x%2 == 0):

        sub-block

    block

● Recall:

if condition:

    block1
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if condition:

    block1
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Sub-blocks

def foo(x):

    if (x%2 == 0):

        sub-block

    block

● Recall:

if condition:

    block1
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Sub-blocks

def foo(x):

    if (x%2 == 0):

        sub-block

    block

● Recall:

if condition:

    block1
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Sub-blocks

def foo(x):

    if (x%2 == 0):

        print 'even'

    print 'odd'



June 14 2012

Indentation

● I have been using indented blocks a lot when 
giving python syntax.

def foo(parameters):

    block

● I want to make it explicit that these blocks last 
as long as the indentation is at least one tab.
● It can be more, because blocks can contain sub 

blocks.

● When you stop indenting the block ends.
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Indentation

● When you stop indenting the block ends.

def foo(parameters):

    block1

block2

    block3

● Blocks 1, 2 and 3 are all different, and only 
block 1 is inside the function definition.

● If the last line of block2 is not something that 
expects a block to follow it, block 3 is illegal.
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Indentation

● When you stop indenting the block ends.

White space does not count as ending a block.

def foo(parameters):

    block1

    block3

● Here block 1 and block 3 are considered to be 
part of the same block, regardless of whether or 
not the empty line contains spaces/tabs/etc.
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Indentation

● When you stop indenting the block ends.

White space does not count as ending a block.

def foo(parameters):

    block1

    block3

● Here block 1 and block 3 are considered to be 
part of the same block, regardless of whether or 
not the empty line contains spaces/tabs/etc.
● Note that this may vary depending on the IDE.
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Break, the second
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Convert these to while loops.

for x in eg_list:

    print x

for x in 
range(len(eg_list)):

    print x 
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Convert these to while loops.

for x in eg_list:

    print x

x = 0 

while x < len(eg_list):

    print eg_list[x]

    x += 1

for x in 
range(len(eg_list)):

    print x 

x = 0

while x < len(eg_list):

    print x

    x += 1



June 23 2011

Files.

● So far we've seen some basic file stuff.

● Media opens files

● The testing script for Assignment 1 opens a file.
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Files as types.

● Python has a type used to deal with files.
● There are four main things we want to do with 

files:
● Figure out how to open them.
● Figure out how to read them.
● Figure out how to write to them.
● Figure out how to close them. 
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Opening files.

● Can hardcode the filename in the code.
● Like done in the script for assignment 1.

● Can ask the user for a file name using 
raw_input()

● Some modules have their own builtin functions 
for opening files.
● media has choose_file() which opens a dialog 

window.
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Opening files.

● Once we have a filename we can call open:

open(filename, 'r') – for reading (this is the 
default mode).

open(filename, 'w') – for writing (erases the 
contents of a file).

open(filename, 'a') – for appending (keeps 
the contents of the file).

● This function returns a new object, a file object.
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Reading Files.

● The most basic way is the read the whole file 
into a string:

filename.read() - returns a string that is the 
contents of the entire file.

● Not recommended for big files.

● Can read a single line of the file.

filename.readline() - reads a line of the 
filename.

● A subsequent call the readline() will read the next 
line of the file, the first line is lost.
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Reading Files.

● Can read a fixed number of characters.

filename.read(10) – will read 10 characters.
● If you call it again, it will start reading from the place 

after the characters that it has read.

● Can read the file a line at a time.
for line in filename:

     print line

● Note that the string split method is often very 
useful.
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Writing to Files.

● Write to files using:
filename.write(“This is a string”)

● Multiple writes are concatenated.
● Need to open a file in append or write mode to 

write to it.
● Append mode will add the strings to the end of 

the file.
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Closing Files.

● Close a file with:

filename.close()

● Generally a good idea.
● Frees up system resources.



June 23 2011

Assignment 1



June 23 2011

Lab Review

● Next weeks lab covers:
● slicing
● nested lists
● while loops
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