
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

June 14 2012

Administration

● Exercise 2 is due tomorrow.
● .Extended one day due to midterms.

● First assignment is up.
● Will cover it today.

● Midterm will be Jun 28th, at 6:00.
● In BA 2185/BA 2195

● Help Centre is still open.
● BA 2270.

June 14 2012

List Review

● Lists are a new type we used to store an array
of variables.
● Created with:

list_name = [list_elt0, ..., list_eltn]
● Elements are referenced with

list_name[elt_#]
● Empty lists are allowed.
● Lists can have changing lengths and are

heterogenous.

● Lists and strings can be sliced.

June 14 2012

List Questions

x = [1,2]

y = [0,2,4,6,8]

● What do these
expressions evaluate
to?

x[0] + y[-3]

y[0:1]

x[y[0]:]

y[-2:5]

y.append([])

y[5]

June 14 2012

List Questions

x = [1,2]

y = [0,2,4,6,8]

● What do these
expressions evaluate
to?

x[0] + y[-3]

5

y[0:1]

0

x[y[0]:]

[1, 2]

y[-2:5]

[6,8]

y.append([])

None

y[5]

[]

June 14 2012

Aliasing/Mutability Review

● Lists are mutable.
● That is, one can change the value of a list element

or append/remove items from a list without needing
to create a new list.

● To capture this, we view a list as a list of memory
addresses in our memory model.

● Changing a list element is modifying the memory
address that list element points to.

● This means lists have aliasing problems.
● Where one has multiple variables referring to the

same list, and modifying one of these lists affects all
of them.

June 14 2012

Aliasing Questions

● How many different lists
are there at the end of
this execution?

def foo(x)

 x.append(1)

 return x.pop()

x = []

y = x[:]

y.append(1)

y.pop()

foo(x)

z = y

foo(y)

a = foo(x)

June 14 2012

Aliasing Questions

● How many different lists
are there at the end of
this execution?

def foo(x)

 x.append(1)

 return x.pop()

x = []

y = x[:]

y.append(1)

y.pop()

foo(x)

z = y

foo(y)

a = foo(x)

2, x and y are
separate lists, z is
aliased with y.

June 14 2012

For Loop Review

● The format of a for loop is:

for list_elt in list_name:

 block
● The block is executed once for each element in

the list.
● list_elt refers to each list element in turn.
● So the block code uses a different variable each

time.

● Unravelling loops is a useful tool.

June 14 2012

Unravel these Loops

x = [0,1,2]

y = 0

for i in x:

 y+=2

x = range(4,10,2)

for i in x:

 print i

June 14 2012

Unravel these Loops

x = [0,1,2]

y = 0

for i in x:

 y+=2
i = x[0]

y += 2

i = x[1]

y += 2

i = x[2]

y += 2

x = range(4,10,2)

for i in x:

 print i
i = x[0]

print i

i = x[1]

print i

i = x[2]

print i

June 14 2012

Lists and Relational Operators

● != and == are defined on lists.
● Two lists are defined to be equal if each element is

equal, and they're in the same places.
● Not based on memory addresses.
● So y == y[:] evaluates to True.

June 14 2012

Nested Lists

● Lists are heterogenous, and often one wants
each list element to be another list.
● Used to represent matrices, tiles, spreadsheet cells,

etc.

● To access an element in a nested list, one uses
multiple square brackets.

list_name[list1_#][list2_#]...

● The closest brackets to the name are evaluated
first.

June 14 2012

Nested Lists

● Lists are heterogenous, and often one wants
each list element to be another list.
● Used to represent matrices, tiles, spreadsheet cells,

etc.

● To access an element in a nested list, one uses
multiple square brackets.

list_name[list1_#][list2_#]...

● The closest brackets to the name are evaluated
first.

June 14 2012

Nested Lists

● Lists are heterogenous, and often one wants
each list element to be another list.
● Used to represent matrices, tiles, spreadsheet cells,

etc.

● To access an element in a nested list, one uses
multiple square brackets.

list_name[list1_#][list2_#]...

● The closest brackets to the name are evaluated
first.

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print ?

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print eg_list[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x1[2][1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x8[1][0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x24[0]

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print 0x7

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Nested Lists and the Memory Model

eg_list = [0,1,[4, [True, 'a']]]

print True

eg_list: 0x1
Global

list

0x1

0x7 0x67

0x5

str

0x67
'a'

int

0x5
0

list

0x24

0x10 0x8

0x13 0x24
list

0x8

bool

0x7
True

int

0x13
4

int

0x10
1

June 14 2012

Evaluate the Boolean Expressions

x = [1,2]

y = [x,x,2,x]

y[0][0] = 12

y[0] == y[3]

x == y[1]

x = [1,2]

y = [x[:],x[:],2,x]

y[0][0] = 12

y[0] == y[3]

x == y[1]

June 14 2012

Evaluate the Boolean Expressions

x = [1,2]

y = [x,x,2,x]

y[0][0] = 12

y[0] == y[3]

True

x == y[1]

True

x = [1,2]

y = [x[:],x[:],2,x]

y[0][0] = 12

y[0] == y[3]

False

x == y[1]

True

June 14 2012

Tuples

● Similar to lists, but not mutable.
● So they cannot be changed once they are

initialised.
● Aliasing is not a problem
● Faster.

● Syntax for creating tuples is like that of lists, but
with parentheses instead of square brackets.

● Syntax for accessing tuple elements is like that
of lists.

June 14 2012

Tuples

● Syntax for creating a tuple:

tuple_name = (elt0, elt1, ...,
eltn)
● Note that this is ambiguous for a single element.
● a = (10) could be an integer or tuple

● Syntax for accessing a tuple element:

tuple_name[elt#]

June 14 2012

Tuples

● Syntax for creating a tuple:

tuple_name = (elt0, elt1, ...,
eltn)
● Note that this is ambiguous for a single element.
● a = (10) could be an integer or tuple
● a = (10,) is unambiguous.

● Syntax for accessing a tuple element:

tuple_name[elt#]

June 14 2012

Assignment Statements

● Evaluate the right side first!
● Variables can be thought of as look up tables.
● The point of an assignment statement is to

connect a memory location to a variable name.
● This means that one needs to evaluate the right

side first, before one can do anything else.

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0x5

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: ?

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = ?

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x3
13

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x3
13

int

0x5
0

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x13
4

int

0x5
0

int

0x3
13

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x13
4

int

0x5
0

int

0x3
13

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 17

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 0x11

x = x + f(4)

x = 10 + f(x)

Global
x: 0x5

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 0x11

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 0x11 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 0x11 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)

Global
x: 0x11

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)
f

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)
f

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)
f

x: ?

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)
f

x: ?

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(0x13)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x13 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x13 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x13 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 4 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 4 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 4 + 4

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 8

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x13
4

Global
x: 0x11

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 8

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + f(4)

x = 10 + f(x)
f

x: 0x13

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 0x18

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 0x18

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 0x18

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 0x18

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 8

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 17 + 8

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x18
8

Global
x: 0x11

int

0x13
4

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return 0x18

x = 0

x = 13 + 4

x = 25

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x11

int

0x13
4

int

0x18
8

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 25

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x11

int

0x13
4

int

0x18
8

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 0x38

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x11

int

0x13
4

int

0x18
8

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 0x38

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x11

int

0x13
4

int

0x18
8

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = 0x38

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x18
8

June 14 2012

Assignment Statements & Memory Model

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x18
8

June 14 2012

Break, the first.

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: ?

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x38 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x38 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x38 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 25 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 25 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 25 + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 29

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x18
8

f
x: 0x38

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 29

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

f
x: 0x38 int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 29

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

f
x: 0x38 int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x63

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

f
x: 0x38 int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x63

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(0x38)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

f
x: 0x38 int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return 0x63

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + 0x63

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + 0x63

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + 0x63

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + 29

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + 29

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 39

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 39

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x79
39

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 0x79

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x38

int

0x13
4

int

0x33
10

int

0x63
29

int

0x79
39

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 0x79

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x79

int

0x13
4

int

0x33
10

int

0x63
29

int

0x79
39

int

0x18
8

June 14 2012

Do all the steps to evaluate the last line.

def f(x):

 return x + 4

x = 0

x = 13 + 4

x = x + f(4)

x = 10 + f(x)

int

0x11
17

int

0x5
0

int

0x3
13

int

0x38
25

Global
x: 0x79

int

0x13
4

int

0x33
10

int

0x63
29

int

0x79
39

int

0x18
8

June 14 2012

While Loops

● For Loops are great if we know how many times
we want to loop over something.
● In other cases, not so great.
● If you want to enforce a legal input, for example
● If you're playing a game and don't know how many

turns there will be.
● If we want to loop indefinitely.

● In these cases we use a while loop.

June 14 2012

While loop syntax

while condition:

 block

● The condition evaluates to a boolean
variable.

● The block is executed so long as the condition
is true.

● If the condition is False the first time the
while loop is seen, the block is never
executed.

June 14 2012

Unravelling While Loops

● We saw that for loops can be unravelled to
make the program simpler to analyse, albeit
longer.

● While loops are more complicated and are not
always possible to be unravelled.
● For eg. if the number of times the block is executed

is dependent on user input.

● So to analyse them we need to use other tools.
● Debugger, visualiser, hand simulation, etc.

June 14 2012

While vs. For

● Every for loop can be written as a while loop.
● Not ever while loop can be written as a for loop:

while True:

 block

● How do we choose between while and for?

June 14 2012

While vs. For

● Every for loop can be written as a while loop.
● Not ever while loop can be written as a for loop:

while True:

 block

● How do we choose between while and for?
● for is simpler.
● In general we prefer simpler loops, as they are

easier to read.

June 14 2012

While vs. For

● While loops are used when:
● We want infinite loops.
● We want to loop some number of times that we

can't predict.
● That is, we want to loop until some condition is met.

June 14 2012

How many times does the while block get
executed?

i = 0

while i<4:

 i+=1

x = +ve # > 1

def foo(x)

 for i in range(x):

 if i*i == x:

 return True

 return False

while not(foo(x)):

 x-=1

June 14 2012

How many times does the while block get
executed?

i = 0

while i<4:

 i+=1

● 4 times, once
for i = 0,1,2,3

x = +ve # > 1

def foo(x)

 for i in range(x):

 if i*i == x:

 return True

 return False

while not(foo(x)):

 x-=1

● Once for every amount that x is larger than
the largest square number <= x.

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output type.
● '''(parameter types) -> output type'''

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output type.
● '''(parameter types) -> output type'''

● If we want to return multiple things, we wrap them
with a tuple and use the following format
● '''(parameter types) -> (output types)'''

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output type.
● '''(parameter types) -> output type'''

● If we want to return multiple things, we wrap them
with a tuple and use the following format
● '''(parameter types) -> (output types)'''
● '''(NoneType) -> (int, str, list)'''

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output types.
● '''(parameter types) -> (output types)'''

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output types.
● '''(parameter types) -> (output types)'''

● This is only for the benefit of the humans writing and
reading the program.

● Python does not check or enforce this convention in any
way.

● Changing your docstring does not change your function in
anyway.

June 14 2012

Docstrings

● Recall that the first line of a docstring contains type
information.
● Specifically it tells us the parameter types and the

expected output types.
● '''(parameter types) -> (output types)'''

● This is only for the benefit of the humans writing and
reading the program.

● Python does not check or enforce this convention in any
way.

● Changing your docstring does not change your function in
anyway.

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

for item in list:

 block

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

while condition:

 block

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

if condition:

 block1

else:

 block2

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

def foo(parameters):

 block

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

def foo(parameters):

 block

● I want to make it explicit that these blocks last
as long as the indentation is at least one tab.
● It can be more, because blocks can contain sub

blocks.

June 14 2012

Sub-blocks

def foo(parameters):

 block

 sub-block

 block

June 14 2012

Sub-blocks

def foo(x):

 if (x%2 == 0):

 sub-block

 block

● Recall:

if condition:

 block1

June 14 2012

Sub-blocks

def foo(x):

 if (x%2 == 0):

 sub-block

 block

● Recall:

if condition:

 block1

June 14 2012

Sub-blocks

def foo(x):

 if (x%2 == 0):

 sub-block

 block

● Recall:

if condition:

 block1

June 14 2012

Sub-blocks

def foo(x):

 if (x%2 == 0):

 sub-block

 block

● Recall:

if condition:

 block1

June 14 2012

Sub-blocks

def foo(x):

 if (x%2 == 0):

 print 'even'

 print 'odd'

June 14 2012

Indentation

● I have been using indented blocks a lot when
giving python syntax.

def foo(parameters):

 block

● I want to make it explicit that these blocks last
as long as the indentation is at least one tab.
● It can be more, because blocks can contain sub

blocks.

● When you stop indenting the block ends.

June 14 2012

Indentation

● When you stop indenting the block ends.

def foo(parameters):

 block1

block2

 block3

● Blocks 1, 2 and 3 are all different, and only
block 1 is inside the function definition.

● If the last line of block2 is not something that
expects a block to follow it, block 3 is illegal.

June 14 2012

Indentation

● When you stop indenting the block ends.

White space does not count as ending a block.

def foo(parameters):

 block1

 block3

● Here block 1 and block 3 are considered to be
part of the same block, regardless of whether or
not the empty line contains spaces/tabs/etc.

June 14 2012

Indentation

● When you stop indenting the block ends.

White space does not count as ending a block.

def foo(parameters):

 block1

 block3

● Here block 1 and block 3 are considered to be
part of the same block, regardless of whether or
not the empty line contains spaces/tabs/etc.
● Note that this may vary depending on the IDE.

June 14 2012

Break, the second

June 14 2012

Convert these to while loops.

for x in eg_list:

 print x

for x in
range(len(eg_list)):

 print x

June 14 2012

Convert these to while loops.

for x in eg_list:

 print x

x = 0

while x < len(eg_list):

 print eg_list[x]

 x += 1

for x in
range(len(eg_list)):

 print x

x = 0

while x < len(eg_list):

 print x

 x += 1

June 23 2011

Files.

● So far we've seen some basic file stuff.

● Media opens files

● The testing script for Assignment 1 opens a file.

June 23 2011

Files as types.

● Python has a type used to deal with files.
● There are four main things we want to do with

files:
● Figure out how to open them.
● Figure out how to read them.
● Figure out how to write to them.
● Figure out how to close them.

June 23 2011

Opening files.

● Can hardcode the filename in the code.
● Like done in the script for assignment 1.

● Can ask the user for a file name using
raw_input()

● Some modules have their own builtin functions
for opening files.
● media has choose_file() which opens a dialog

window.

June 23 2011

Opening files.

● Once we have a filename we can call open:

open(filename, 'r') – for reading (this is the
default mode).

open(filename, 'w') – for writing (erases the
contents of a file).

open(filename, 'a') – for appending (keeps
the contents of the file).

● This function returns a new object, a file object.

June 23 2011

Reading Files.

● The most basic way is the read the whole file
into a string:

filename.read() - returns a string that is the
contents of the entire file.

● Not recommended for big files.

● Can read a single line of the file.

filename.readline() - reads a line of the
filename.

● A subsequent call the readline() will read the next
line of the file, the first line is lost.

June 23 2011

Reading Files.

● Can read a fixed number of characters.

filename.read(10) – will read 10 characters.
● If you call it again, it will start reading from the place

after the characters that it has read.

● Can read the file a line at a time.
for line in filename:

 print line

● Note that the string split method is often very
useful.

June 23 2011

Writing to Files.

● Write to files using:
filename.write(“This is a string”)

● Multiple writes are concatenated.
● Need to open a file in append or write mode to

write to it.
● Append mode will add the strings to the end of

the file.

June 23 2011

Closing Files.

● Close a file with:

filename.close()

● Generally a good idea.
● Frees up system resources.

June 23 2011

Assignment 1

June 23 2011

Lab Review

● Next weeks lab covers:
● slicing
● nested lists
● while loops

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184

